Diego Elements of Hilbert Space and Operator Theory with Application to Integral Equations

نویسنده

  • Bo Li
چکیده

Preface These lecture notes present elements of Hilbert space and the theory of linear operators on Hilbert space, and their application to integral equations. Chapter 1 reviews vector spaces: bases, subspaces, and linear transforms. Chapter 2 covers the basics of Hilbert space. It includes the concept of Ba-nach space and Hilbert space, orthogonality, complete orthogonal bases, and Riesz representation. Chapter 3 presents the core theory of linear operators on Hilbert space, in particular, the spectral theory of linear compact operators and Fredholm Alternatives. Chapter 4 is the application to integral equations. Some supplemental materials are collected in Appendicies. The prerequisite for these lecture notes is calculus. Occasionally, advanced knowledges such as the Lebesgue measure and Lebesgue integration are used in the notes. The lack of such knowledge, though, will not prevent readers from grasping the essence of the main subjects. The presentation in these notes is kept as simple, concise, and self-complete as possible. Many examples are given, some of them with great details. Exercise problems for practice and references for further reading are included in each chapter. The symbol ⊓ ⊔ is used to indicate the end of a proof. These lecture notes can be used as a text or supplemental material for various kinds of undergraduate or beginning graduate courses for students of mathematics, science, and engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Properties of Continuous $K$-frames in Hilbert Spaces

The theory of  continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory.  The $K$-frames were  introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of  $K$-frames, there are many differences between...

متن کامل

Solving integral equations of the third kind in the reproducing kernel space

A reproducing kernel Hilbert space restricts the space of functions to smooth functions and has structure for function approximation and some aspects in learning theory. In this paper, the solution of an integral equation of the third kind is constructed analytically using a new method. The analytical solution is represented in the form of series in the reproducing kernel space. Some numerical ...

متن کامل

c-Frames and c-Bessel mappings

The theory of c-frames and c-Bessel mappings are the generalizationsof the theory of frames and Bessel sequences. In this paper, weobtain several equivalent conditions for dual of c-Bessel mappings.We show that for a c-Bessel mapping $f$, a retrievalformula with respect to a c-Bessel mapping $g$ is satisfied if andonly if $g$ is sum of the canonical dual of $f$ with a c-Besselmapping which  wea...

متن کامل

$L_{p;r} $ spaces: Cauchy Singular Integral, Hardy Classes and Riemann-Hilbert Problem in this Framework

In the present work the space  $L_{p;r} $ which is continuously embedded into $L_{p} $  is introduced. The corresponding Hardy spaces of analytic functions are defined as well. Some properties of the functions from these spaces are studied. The analogs of some results in the classical theory of Hardy spaces are proved for the new spaces. It is shown that the Cauchy singular integral operator is...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005